欢迎光临本站! 淄博鑫亚钙业有限公司 网址: xinyagaiye.com

公司动态

碳酸钙在塑料中常见问题

文字:[大][中][小] 2015-10-8    浏览次数:3535    

      1 常见问题

      1.1 有关纳米碳酸钙的问题

      纳米技术和纳米塑料是近年来非常活跃而同时又屡遭非议的领域。标有纳米字样的研究成果及产品到处可见,其中不乏真识卓见,也有一些工业化的产品进入市场,但心存疑虑的大有人在。从产业化的角度看要求在经济上合理的前提下其性价比明显提高,即可认定有其产业化的价值,而从学术的角度看,纳米仅仅是一个长度的度量单位,具有纳米尺度的(通常公认三维方向至少有一个方向的长度小于100nm)颗粒能否均匀地、互不粘连地分散在塑料基体中,是判断能否称之为纳米塑料的关键。因为只有当纳米尺度的颗粒像海岛一样分布在基体塑料的汪洋大海之中时,纳米技术的小尺寸效益、大比表面效应和量子化效应才能真正体现出来,从而带来材料性能质的飞跃,而不是仅仅得到一些提高和改善。

      例如含有4.2%蒙脱土的尼龙6,较之纯尼龙6其拉伸强度提高50%,模量提高100%,而冲击强度基本不变,同时热变形温度提高近90℃,透明性增加,吸水性下降。微观观察此种尼龙可知蒙脱土颗粒确实是以纳米尺度的碎片分散在尼龙6基体中,而且呈全剥离型,即形成了真正意义上的纳米塑料。

      首先要强调指出的是蒙脱土是一种层状硅酸盐,但并不是添加到塑料中就成为纳米塑料。如果蒙脱土始终保持着原来的结构,层间距不变,仅仅以细小颗粒的形式分散在基体塑料中,其颗粒尺寸仍然在微米级范畴,那得到的只是传统意义上的填充改性材料,不能称之为纳米塑料。如果聚合物分子已经插入到蒙脱土结构片层层间,并使其间距增大,但叠层的结构仍然保持着(插层型复合),此时复合材料的性能将会有所改进,但幅度不会太太,也不能称之为纳米塑料。只有蒙脱土的叠层结构被完全打破,约1nm大小的硅酸盐碎片无规则而又均匀地分散到聚合物基体中,分散相具有极小的尺寸和极大的比表面积(剥离型复合),才是我们所希望达到的目标。

      不可否认纳米碳酸钙在生产过程中某一时刻,其粒子大小确实处于十几到几十nm的范畴,但在随后的脱水、干燥过程中,这些原生粒子又团聚起来,作为商品到我们用户手里实际上是这些团聚体,利用现有粉体表面处理设备、处理剂以及后续的混炼设备都不可能将团聚体打散,从而不可能得到真正的纳米碳酸钙改性的纳米塑料。

      1.2 增重问题

      使用资源相对丰富的非金属矿粉体材料填充塑料其重要意义不言而喻,但由于非金属矿物的真实密度比合成树脂大得多,因此随着添加量增加,填充材料的密度明显增大。例如当密度达2.9g/cm3的重质碳酸钙加人到HDPE中,其重量百分数达50%时,填充塑料的注塑成型材料的密度达到1.6g/cm3,其重量百分数达到80%时,填充HDPE的密度达到2.0g/cm3。密度增大对以长度、面积、制件个数计算价值的塑料制品来说,有可能因为密度增大导致长度、面积下降或制件个数减少,不仅抵消了使用廉价矿物粉体材料带来的利益,还有可能得不偿失。因此尽管在技术上可以解决尽可能多使用廉价矿物粉体材料的问题,而且有的性能(如刚性、韧性、燃烧性等)还有求于密度大的矿物粉体材料,但毕竟塑料制品加工企业及其用户要综合考虑塑料制品技术性能与经济双方面的综合效果,然后才谈得上对资源、对环境的社会效益。填充塑料因密度增大而“增重”的问题已经严重制约塑料改性朝着资源、能源节约型和环境友好型行业迈进的目标。

      需要指出的是有的塑料制品对密度大的矿物粉体材料带来的负面影响并不敏感,如单向拉伸的编织袋扁丝、打包带、撕裂膜等,当这些制品在生产过程中基体塑料被单向拉伸时,大分子之间以及大分子和填充颗粒之间出现空隙,而且因拉伸比是固定的,从制品长度看,可以控制加工过程使之仍能达到不加填料时的长度,因此这些单向拉伸制品在填料添加量高达20%以上时,仍能在满足使用性能要求前提下大幅度降低原材料成本,“增重”带来的影响不大。在聚乙烯塑料薄膜加工过程中,膜泡受到纵向拉伸和径向吹涨,由于拉伸比和吹胀比大大低于单向拉伸制品的拉伸比,加入填料仍会使塑料薄膜的密度增大,但较之注塑制品,由于拉伸和吹胀同样给大分子之间、大分子与填料之间带来空隙,所以其密度的增大程度远远低于注塑制品。例如加入30%重质碳酸钙的HDPE薄膜,其密度不大于1.1g/cm3,而同样配方的注塑成型制品,其密度将达到1.3g/cm3左右。我们得到的启发就是如果在塑料制品成型过程中,在保证材料力学性能的前提下,如果能在基体塑料的大分子之间、大分子与填料之间、填料颗粒自身或相互之间生成空隙,就能将填充塑料的密度降下来,就能缓解甚至彻底解决“增重”问题。

      遵循这种思路,一些企业和科技人员已经做出了有希望的探索,如通过不同种类填料搭配使用,或预先对填料颗粒进行处理呈发泡体再与基体塑料混合,以及在注射成型时采取特殊工艺等方法,都取得了一定的效果。可以认为在“增重”问题上的突破并可用于实际生产,将为改性塑料的发展带来革命性的影响,值得我们为之努力!

      1.3 成型加工尺寸收缩率问题

      在用性价比更好的改性塑料代替传统的塑料材料(如用矿物粉体材料填充PP代替ABS) 时,除性能和外观上应当达到预期的要求外,成型加工尺寸收缩率是不容忽视的重要问题。表6列出用高分子材料与PP共混或在PP中添加无机材料时,对PP成型加工尺寸收缩率的影响情况。

      成型加工尺寸收缩率的变化会影响到模塑成型制品的几何形状和尺寸大小。用于纯PP或PE的注塑成型模具是按物料收缩率1.5~2.0%设计的(上述研究工作中,同样条件下纯PP的成型加工尺寸收缩率为1.7%),如果填充碳酸钙后,成型加工尺寸收缩率变小,那么对那些靠冷却收缩脱模的制品,会发生抱死、表面划伤和变形等问题。而如果用碳酸钙填充的PP或PE塑料专用料,代替ABS树脂时,因为ABS的成型加工尺寸收缩率仅为0.5%,同样会发生脱模困难或形状变化的问题。塑料制品加工企业往往不愿意因为更换原料而修改或重新制作模具,就有可能打消使用改性料的愿望。

      1.4 表面处理问题

      1.4.1 目的

      粉体颗粒表面处理的结果是使其由亲水性转变化疏水性,即亲油性,有助于粉体颗粒与基体高分子树脂之间形成相互融合的界面,从而提高填充塑料的性能。从另一角度讲,颗粒粒径越小,其表面能越高,越易发生团聚,而经表面处理后,其表面能明显下降,从而可以大大降低颗粒之间的团聚倾向。

      对某些塑料制品,碳酸钙不经过表面处理照样可以使用,例如软质PVC塑料鞋底、人造革等。实际上这些制品加工时所加入的增塑剂已经起到了表面处理剂的作用。有些塑料制品不计较性能的优劣,更重视降低原材料成本,此时直接使用不经过表面处理的碳酸钙也是可以理解的。表7列出碳酸钙表面处理与否和处理优劣对填充体系缺口冲击强度的影响。从表中数据可知,使用不经表面处理的碳酸钙,填充材料的缺口冲击强度较不填充的纯塑料下降42%,而使用经一般偶联剂处理的碳酸钙,在相同条件下可达到不加填料的纯树脂的水平,而如果表面处理得非常好,可使填充PE的缺口冲击强度提高10倍以上。

      1.4.2表面处理剂

      书本上的表面处理剂种类繁多,但真正使用量大的商品化的表面处理剂主要有硬脂酸、钛酸酯偶联剂和铝酸酯偶联剂三大类,此外还有硅烷偶联剂和磷酸酯偶联剂等。

      (1)对碳酸钙表面处理用哪种处理剂最好?

      硬脂酸最便宜,而且对聚氯乙烯塑料来说比较适合,因为硬脂酸除了可使碳酸钙的表面有机化外,还可以做为聚氯乙烯的外润滑剂使用。对聚烯烃塑料来说,硬脂酸也可以用来处理碳酸钙,但用量较大,且因无化学反应仅起包覆作用,故整体效果不如偶联剂。

      几种偶联剂都可用于碳酸钙表面处理,但各具特点。钛酸酯偶联剂多为液态,易分布开来,但通常颜色较深,在要求白度高的产品中不适合;铝酸酯价格比钛酸酯便宜一些,颜色呈白或淡黄色,利于做白色制品,但通常为固态腊状,熔融和分布开来需要足够的时间;硅烷偶联剂十分昂贵,而且由于分子结构上柔性碳链少且短,对填充塑料的加工流动性有影响。

      在选择表面处理剂时要同时考虑价格、效果两个方面,特别要从处理好的重钙将用于哪一种塑料和制品方面考虑并决定。

      (2)为什么市售偶联剂的价格相差悬殊?

      同一类偶联剂本身受基本原材料的价格限制,其价格相差并不会很悬殊,但市售的偶联剂产品中因有效成分多少不同,价格就相差很大。例如铝酸酯偶联剂商品中,中间体异丙醇铝的多少直接影响着成本,它的价格是辅助成分硬脂酸、石蜡的4~5倍,又如钛酸酯偶联剂中溶剂的多少也直接影响着价格。因此,购买偶联剂要看其使用效果,而不能一味追求价格越低越好。

      (3)偶联剂如何使用?

      使用偶联剂最关键的问题是要让它以最快的速度到达碳酸钙的每一个颗粒跟前并与之发生化学反应形成化学键合。这就要求一是要在高速运动状态下分布开来,二是要有适当的温度利于化学反应的进行。此外还有一个氢质子(H+)的来源问题,如果碳酸钙中水分含量高,偶联剂有可能与水先进行反应(H+由H2O来提供),而不是与碳酸钙表面上的羟基反应,那么表面处理的目的就不能达到了。因此必须要保证快速分布、温度适宜和不含水分三个条件,才能发挥出偶联剂应有的作用。至于是否应先溶于溶剂,是否一定要以喷雾形式加入到处理设备中,一定要分批分次投人,经实践表明这些并不重要。

      1.4.3表面处理设备

      现在使用的高速混合机本来不是为粉体材料表面处理而设计制造的,而是为聚氯乙烯树脂预塑化而设计制造的,因此它并不是天然地适用于粉体表面处理的设备,这对于包括超细重质碳酸钙在内的粒度较小的粉体材料就更不适应。幸好近几年来塑料加工设备制造企业已经根据我们的要求做了重大改造。因此在购买高速混合机时一定要声明是用于粉体表面处理的。

      对于改性塑料加工企业,往往自行进行碳酸钙的表面处理,一是配方可灵活掌握,二是可将碳酸钙表面处理和下游工序串联在一起,因此他们的重点在于改造现有的高速混合机,使之更适合于自己的工艺要求,而对于生产大批量活性碳酸钙的生产企业,有必要考虑使用处理量大且连续生产的,对环境和工人操作条件都比较好的表面处理设备。在连续处理设备方面,青岛青矿矿山设备有限公司经过多年努力,研制成功PSC连续式粉体表面改性机,处理量从0.3吨/时至2吨/时不等,表面包覆率可达96%以上,且改性后的微粉不易再次团聚,使用后效果比较理想。下面是该种粉体表面改性机的工艺流程示意图。

      1.4.4纳米碳酸钙怎么进行表面处理?

      纳米材料的核心问题是要做到在塑料基体的海洋中,做为分散相的纳米级粉体颗粒要达到纳米尺度的分散,不能呈众多粒子的团聚体状态分布,这样才能将纳米粒子表面不完整从而活性极强的特点发挥出来,同时还要求达到纳米尺度的粉体颗粒表面要直接与基体塑料的大分子相接触,以利于发生某种化学的或物理的联系,如果纳米粒子的表面被所使用的表面处理剂完全包覆了,成为完全由改性剂的分子与基体塑料大分子相接触,就会失去纳米粒子自身的功能性,同样不能产生质的变化。因此对纳米碳酸钙进行表面处理时,一方面要将团聚体打开并使其不再团聚,另一方面不能形成完全包覆,还要让纳米粒子的部分表面或部分没有得到包覆的粒子与基体塑料大分子相接触。这是摆在纳米碳酸钙生产厂家和改性塑料加工企业面前的共同的课题,有待我们去努力加以突破。

      1.4.5 表面处理优劣的判断问题

      由于我们对粉体颗粒表面处理的机理和实际情况还不是十分清楚,还由于有些情况下表面处理是在塑料加工过程中原位进行的,因此对于粉体表面状态是否已经达到我们预期的要求了,我们很难判断。

      最简单的办法是看已表面处理的粉体材料能否漂浮在水面上,杯中的水是否混浊。再进一步可通过测定沉淀的粉体数量计算活化率。按照严谨的科学态度,这种判断仅能算是粗浅的,不可靠的一种定性的判断。因为我们不知道粉体颗粒是否团聚了,团聚体内层的颗粒是否也已得到有机化了,以及不亲水是否就一定能和塑料基体大分子能形成良好的相界面了。一方面我们期待有关学者和科技人员在微观形态上进行深入研究,另一方面我们只能通过最后的宏观结果来判断所做的表面处理是否成功,效果是否良好,从而得到技术、经济两方面都能接受的结论。

      1.5 磨损设备及模具问题

      一些使用碳酸钙的塑料加工企业担心接触碳酸钙填充塑料的物料会磨损加工设备的螺筒、螺杆、机头、模具等,从而将使用廉价填料带来的效益被设备提前报废造成的损失所抵消,甚至得不偿失。一方面我们的回答是磨损问题确实存在,我们要正视它并采取必要的措施应对,另一方面我们要明确指出,碳酸钙填充塑料对所接触的钢铁材料的磨损是十分轻微的,远远的小于玻璃纤维增强塑料对钢铁材料的磨损,而在长期使用玻纤增强塑料的历程中,并没有塑料加工企业提出玻璃纤维的磨损问题,说明远小于玻纤磨损的碳酸钙磨损问题相对于使用碳酸钙带来的丰厚的利益是极其微不足道的。

      在常用的无机矿物粉体材料中,重质碳酸钙的硬度还是比较高的(见表8),但相对于塑料加工设备主要金属部件所用的氮化钢来说还是相差很多的,按磨损理论,金属材料的硬度高于磨料硬度1.25倍以上时,属低磨损情况。另一方面磨损的程度随磨料的粒度减小而下降,使用400目或更细的重钙,对金属材料的磨损都在轻微范畴之内。

      1.6 碳酸钙是否有利于塑料的阻燃?

      碳酸钙的热分解温度在800℃以上,而一般的塑料的都是易燃的,其点燃的温度在400℃左右,因此在初始燃烧阶段,希望碳酸钙分解释放出二氧化碳是不可能的。碳酸钙存在的有利之处仅在于减少可燃物的量,而且碳酸钙含量越高,在同一体积内的可燃物质就越少,当然有利于阻燃。但由于碳酸钙的存在,高分子材料燃烧时迅速膨胀并气化的过程中形成无数微孔,大大增加了可燃物的与氧气接触的表面积,使更多的可燃物参与燃烧,并进一步提高着火区域的温度,更有利于可燃物的膨胀与气化,恶性循环的结果,使碳酸钙作为不燃物质的贡献显得微不足道。上世纪九十年代日本等国家和地区率先在聚乙烯垃圾袋中加入30%的重钙,就是出于在焚烧炉中碳酸钙有利于聚乙烯燃烧的考虑。

      实验表明,100g含有30%碳酸钙和1%焚烧热氧降解剂的聚乙烯薄膜完全燃烧所需时间仅为4秒,而同样重量的纯聚乙烯薄膜完全燃烧所需时间为12秒,二者相差三倍。

      1.7 碳酸钙对塑料老化的影响如何?

      作为高分子聚合物,在光、热等环境条件下会发生分子链的断裂,同时有可能产生接枝或交联反应,宏观上表现为力学性能下降,这种现象称之为老化。

      在光的作用下聚乙烯塑料薄膜极易发生老化。针对聚乙烯光老化机理研制生产了光稳定剂。当碳酸钙加入到聚乙烯中制成薄膜后,对其老化性能影响是决定我们如何在地膜或与阳光频繁接触的聚乙烯或聚丙烯塑料制品中使用碳酸钙的重要问题。

      实验表明含有碳酸钙或滑石粉的聚乙烯薄膜在日光曝晒过程中,达到一定值羰基指数(CI)的时间都少于纯聚乙烯薄膜,表明碳酸钙的存在对聚乙烯薄膜的老化是有一定促进作用的,见表9。表10列出碳酸钙改性母料填充PE薄膜在人工加速氙灯老化前后力学性能的变化数据。检测结果表明随着碳酸钙用料增加,在同样老化条件下,填充PE薄膜老化速度加快。

      1.8 毒性问题

      食品安全包括食品本身的安全和食品包装材料的安全,近年来日益得到上至国家政府,下至黎民百姓的密切关注,新闻媒体更是乐此不疲,不时报出轰动性新闻,牢牢抓住读者的眼球。其中和碳酸钙有关的就是“毒论”。中央电视台曾反复播出执法人员到河北某厂抓“现行”的画面,镜头对准一袋袋的“毒物”,上面赫然印着“方解石粉”几个大字。方解石粉即重质碳酸钙真的有毒吗?据说是因为“石粉”,加到PP餐盒中,按目前我国《食品包装用聚丙烯成型品卫生标准》检测,4%乙酸浸泡2小时后的蒸发残渣应≤30mg/L要求,现市售的填充型PP餐盒多数是不合格的。这主要是因为碳酸钙为强碱弱酸盐,易被酸性液体溶解,其蒸发残渣经检验全部为乙酸钙,但这与“毒”无任何关系,因为作为医药的钙片其主要成分就是碳酸钙,进人人体胃中遇胃酸同样要被溶解。就连我们每天必须饮用的水中也含有大量钙、镁离子,煮水壶中的水垢就是明证。为什么同样是钙,在方解石粉中,在重钙中就成为“毒品”了呢?不合格是指就目前的国家标准与检验方法来说未达标,但不合格不等于“有毒”,现在国家质检部门屡屡公布的市场商品抽检结果,不合格率经常达到20%以上,那都认为是“有毒”吗?

      1)我们向来主张应当科学地、合理地、适量地使用碳酸钙;

      2)碳酸钙本身无毒、对人体无任何害处,适当补充还是非常必要的,因此只要我们的产品中没有对人体有害的重金属成分,就不应当将“方解石粉”等碳酸钙产品列为“有毒物质”;

      3)目前涉及到蒸发残渣的卫生标准还在执行,而且也不可能因为碳酸钙的问题就将其废除或修订,但我们应当理直气壮地宣布合理地、适量的使用碳酸钙不会给人身健康带来任何问题;

      4)相对于形形色色的所谓“环保”材料来说,碳酸钙填充的聚丙烯塑料和聚苯乙烯发泡塑料,具有极强的市场竞争力,目前在市场上仍然占主导地位。自2007年8月1日起国家要正式实施食品包装材料的市场准入制,即产品必须获得“QS”标识才能准予进入市场,这肯定要波及到使用碳酸钙的企业,也必然波及到生产碳酸钙的企业,我们要事先做好心理准备和拿出应对措施。

返回上一步
打印此页
[向上]

网站首页

qq分分彩官方网站

天天分分彩平台

分分彩开奖结果

资讯动态

招聘信息

在线询单

联系我们